Auxiliary Materials for Perfect Parallelepipeds Exist
Jorge F. Sawyer and Clifford A. Reiter
submitted

Abstract --- There are parallelepipeds with edge lengths, face diagonal lengths and body diagonal lengths all positive integers. In particular, there is a parallelepiped with edge lengths 271, 106, 103, minor face diagonal lengths 101, 266, 255, major face diagonal lengths 183, 312, 323, and body diagonal lengths 374, 300, 278, 272. Searches for perfect parallelepipeds led to configurations satisfying necessary quadratic diophantine equations but which are not realizable in R^3; realizable configurations satisfy an additional sixth degree inequality. Brute force searches also give primitive perfect parallelepipeds with some some rectangular faces.

Manuscript preprint: [Preprint on ArXive for Math]

MathematicaTM computations for proofs in the manuscript: [as html] [as *.nb]

MathematicaTM computations for 12 examples: [as html] [as *.nb]

MathematicaTM 3-d visualization for example 1 and 5: [as html] [as *.nb]

Summarizing and extending the examples in the above, here is a list of parameters for the perfect parallelepipeds we have found.
Note: when the manuscript above was prepared we unintentionally did not allow perfect rectangles in our search. Below shows a more complete list of perfect parallelepipeds including some with one or two rectangular faces (e.g. #5 and #10) and where face diagonals match an edge (e.g. #5) and body diagonals match a face diagonal (e.g. #5, #23). Additional examples with three oblique angles meeting at a vertex are listed at the end. At least the first two of these were found by Randall Rathbun before we found the examples below.

nx1x2x3d23d13d12D23D13D12M1M2M3M4
1271106103101266255183312323272278300374
26303653354445953855428159553926069061108
36475403752854486538859589977487586521358
473959534246366177485394310968648289141342
58406305655659591050105510631050130910639591387
68956866526509739391170122712891225105511551685
79255794224315777769171317133463810749641728
895235734049385287549311481141765108510591309
91081840623497120613691393128813691734123211461792
1011201035840969140015251617140015251967148114811967
11138110386651087131415831363172418611632179817162206
121535111095510151030799180523402557676162620323282
13157515009801672185521751904185521752471229722972471
14163415829591267184518882289194326042473168923873115
151885168016101610216325252870275925253213275921633641
162115191514201215165717203145319936502332212427184826
172255224015401316225526853612313536053587250927094837
18238520457801985196525422375295536442342294232564144
192517235412481886158120773262364544092005277934735471
202520227515002725159633952725382833952779445327794453
212674194212811537280717642909311543282625161740514933
223080268822413315380940883675380940884795452545254795
233213196615401966356326952934356345953465269545955085
243257238612512675318818872713376653891794265253385720
253343302427304074334335654074510752853565525552856545
263557311528541689440939685731470753826126320245567312
273920380523103805455053135015455056096237531356096491

Some with three oblique angles meeting at a vertex.

1ob132913138341669157521941433156314722272242018021574
2ob195313306981512231528071492180118133065270922051639
3ob2856232915473502326948231836322719754620547432981308

See also: