Abstract --- There are parallelepipeds with edge lengths, face diagonal lengths and body diagonal lengths all positive integers. In particular, there is a parallelepiped with edge lengths 271, 106, 103, minor face diagonal lengths 101, 266, 255, major face diagonal lengths 183, 312, 323, and body diagonal lengths 374, 300, 278, 272. Searches for perfect parallelepipeds led to configurations satisfying necessary quadratic diophantine equations but which are not realizable in R^3; realizable configurations satisfy an additional sixth degree inequality. Brute force searches also give primitive perfect parallelepipeds with some some rectangular faces.
Manuscript preprint: [Preprint on ArXive for Math]
MathematicaTM computations for proofs in the manuscript: [as html] [as *.nb]
MathematicaTM computations for 12 examples: [as html] [as *.nb]
MathematicaTM 3-d visualization for example 1 and 5: [as html] [as *.nb]
Summarizing and extending the examples in the above, here is a
list of parameters for the perfect parallelepipeds we have found.
Note: when the manuscript above was prepared we unintentionally did not allow
perfect rectangles in our search. Below shows a more complete list of
perfect parallelepipeds including some with one or two rectangular faces (e.g. #5 and #10)
and where face diagonals match an edge (e.g. #5) and body diagonals match a
face diagonal (e.g. #5, #23). Additional examples with three oblique angles meeting at
a vertex are listed at the end. At least the first two of these were found by Randall Rathbun
before we found the examples below.
n | x1 | x2 | x3 | d23 | d13 | d12 | D23 | D13 | D12 | M1 | M2 | M3 | M4 |
1 | 271 | 106 | 103 | 101 | 266 | 255 | 183 | 312 | 323 | 272 | 278 | 300 | 374 |
2 | 630 | 365 | 335 | 444 | 595 | 385 | 542 | 815 | 955 | 392 | 606 | 906 | 1108 |
3 | 647 | 540 | 375 | 285 | 448 | 653 | 885 | 958 | 997 | 748 | 758 | 652 | 1358 |
4 | 739 | 595 | 342 | 463 | 661 | 774 | 853 | 943 | 1096 | 864 | 828 | 914 | 1342 |
5 | 840 | 630 | 565 | 565 | 959 | 1050 | 1055 | 1063 | 1050 | 1309 | 1063 | 959 | 1387 |
6 | 895 | 686 | 652 | 650 | 973 | 939 | 1170 | 1227 | 1289 | 1225 | 1055 | 1155 | 1685 |
7 | 925 | 579 | 422 | 431 | 577 | 776 | 917 | 1317 | 1334 | 638 | 1074 | 964 | 1728 |
8 | 952 | 357 | 340 | 493 | 852 | 875 | 493 | 1148 | 1141 | 765 | 1085 | 1059 | 1309 |
9 | 1081 | 840 | 623 | 497 | 1206 | 1369 | 1393 | 1288 | 1369 | 1734 | 1232 | 1146 | 1792 |
10 | 1120 | 1035 | 840 | 969 | 1400 | 1525 | 1617 | 1400 | 1525 | 1967 | 1481 | 1481 | 1967 |
11 | 1381 | 1038 | 665 | 1087 | 1314 | 1583 | 1363 | 1724 | 1861 | 1632 | 1798 | 1716 | 2206 |
12 | 1535 | 1110 | 955 | 1015 | 1030 | 799 | 1805 | 2340 | 2557 | 676 | 1626 | 2032 | 3282 |
13 | 1575 | 1500 | 980 | 1672 | 1855 | 2175 | 1904 | 1855 | 2175 | 2471 | 2297 | 2297 | 2471 |
14 | 1634 | 1582 | 959 | 1267 | 1845 | 1888 | 2289 | 1943 | 2604 | 2473 | 1689 | 2387 | 3115 |
15 | 1885 | 1680 | 1610 | 1610 | 2163 | 2525 | 2870 | 2759 | 2525 | 3213 | 2759 | 2163 | 3641 |
16 | 2115 | 1915 | 1420 | 1215 | 1657 | 1720 | 3145 | 3199 | 3650 | 2332 | 2124 | 2718 | 4826 |
17 | 2255 | 2240 | 1540 | 1316 | 2255 | 2685 | 3612 | 3135 | 3605 | 3587 | 2509 | 2709 | 4837 |
18 | 2385 | 2045 | 780 | 1985 | 1965 | 2542 | 2375 | 2955 | 3644 | 2342 | 2942 | 3256 | 4144 |
19 | 2517 | 2354 | 1248 | 1886 | 1581 | 2077 | 3262 | 3645 | 4409 | 2005 | 2779 | 3473 | 5471 |
20 | 2520 | 2275 | 1500 | 2725 | 1596 | 3395 | 2725 | 3828 | 3395 | 2779 | 4453 | 2779 | 4453 |
21 | 2674 | 1942 | 1281 | 1537 | 2807 | 1764 | 2909 | 3115 | 4328 | 2625 | 1617 | 4051 | 4933 |
22 | 3080 | 2688 | 2241 | 3315 | 3809 | 4088 | 3675 | 3809 | 4088 | 4795 | 4525 | 4525 | 4795 |
23 | 3213 | 1966 | 1540 | 1966 | 3563 | 2695 | 2934 | 3563 | 4595 | 3465 | 2695 | 4595 | 5085 |
24 | 3257 | 2386 | 1251 | 2675 | 3188 | 1887 | 2713 | 3766 | 5389 | 1794 | 2652 | 5338 | 5720 |
25 | 3343 | 3024 | 2730 | 4074 | 3343 | 3565 | 4074 | 5107 | 5285 | 3565 | 5255 | 5285 | 6545 |
26 | 3557 | 3115 | 2854 | 1689 | 4409 | 3968 | 5731 | 4707 | 5382 | 6126 | 3202 | 4556 | 7312 |
27 | 3920 | 3805 | 2310 | 3805 | 4550 | 5313 | 5015 | 4550 | 5609 | 6237 | 5313 | 5609 | 6491 |
Some with three oblique angles meeting at a vertex.
1ob | 1329 | 1313 | 834 | 1669 | 1575 | 2194 | 1433 | 1563 | 1472 | 2272 | 2420 | 1802 | 1574 |
2ob | 1953 | 1330 | 698 | 1512 | 2315 | 2807 | 1492 | 1801 | 1813 | 3065 | 2709 | 2205 | 1639 |
3ob | 2856 | 2329 | 1547 | 3502 | 3269 | 4823 | 1836 | 3227 | 1975 | 4620 | 5474 | 3298 | 1308 |